手机浏览器扫描二维码访问
对于bertrand假设,他准备使用反证法。
这是除了直接推导证明法之外最常用的证明方法,面对许多猜想时非常重要。
尤其是……在证明某个猜想不成立时!
但程诺现在当时不是要寻找反例,证明bertrand假设不成立。
切尔雪夫已然证明这一假设的成立,使用反证法,无非是将证明步骤进行简化。
程诺自信满满。
第一步,用反证法,假设命题不成立,即存在某个n≥2,在n与2n之间没有素数。
第二步,将(2n)!(n!n!)的分解(2n)!(n!n!)=Πps(p)(s(p)为质因子p的幂次。
第三步,由推论5知p≈ap;ap;ap;ap;lt;2n,由反证法假设知p≤n,再由推论3知p≤2n3,因此(2n)!(n!n!)=Πp≤2n3ps(p)。
………………
第七步,利用推论8可得:(2n)!(n!n!)≤Πp≤√2nps(p)·Π√2n≈ap;ap;ap;ap;lt;p≤2n3p≤Πp≤√2nps(p)·Πp≤2n3p!
思路畅通,程诺一路写下来,不见任何阻力,一个小时左右便完成一半多的证明步骤。
连程诺本人,都惊讶了好一阵。
原来我现在,不知不觉间已经这么厉害了啊!!!
程诺叉腰得意一会儿。
随后,便是低头继续苦逼的列着证明公式。
第八步,由于乘积中的第一组的被乘因子数目为√2n以内的素数数目,即不多于√2n2-1(因偶数及1不是素数)……由此得到:(2n)!(n!n!)≈ap;ap;ap;ap;lt;(2n)√2n2-1·42n3。
第九步,(2n)!(n!n!)是(1+1)2n展开式中最大的一项,而该展开式共有2n项(我们将首末两项1合并为2),因此(2n)!(n!n!)≥22n2n=4n2n。两端取对数并进一步化简可得:√2nln4≈ap;ap;ap;ap;lt;3ln(2n)。
下面,就是最后一步。
由于幂函数√2n随n的增长速度远快于对数函数ln(2n),因此上式对于足够大的n显然不可能成立。
至此,可说明,bertrand假设成立。
论文的草稿部分,算是正式完工。
而且完工的时间,比程诺预想的要早了整整一半时间。
这样的话,还能趁热的将毕业论文的文档版给搞出来。
搞!搞!搞!
啪啪啪~~
程诺手指敲击着键盘,四个多小时后,毕业论文正式完稿。
程诺又随手做了一份ppt,毕业答辩时会用到。
至于答辩的腹稿,程诺并没有准备这个东西。
反正到时候兵来将挡,水来土掩就是。
要是以哥的水平,连一个毕业答辩都过不了,那还不如直接找块豆腐撞死算了。
哦,对了,还有一件事。
程诺一拍脑袋,仿佛记起了什么。
在网上搜索一阵,程诺将论文转换为英文的pdf格式,打包投给了位于德古国的一家学术期刊:《数学通讯符号》。
sci期刊之一,位列一区。
影响因子521,即便在一区的诸多著名学术杂志中,都属于中等偏上的水平。
……………………
ps:《爱情公寓》,哎~~
最终猎杀 校花的透视高手 最强医圣林奇 无垠 重生之国民男神 永恒圣王 大周王侯 开局顶流的我怎么会糊 否 念念不忘 全集 网游大相师 主角猎杀者 诸界末日在线 超级母舰 我的师门有点强 全能游戏设计师 清香木 超脑太监 幻想世界大穿越 逍遥梦路
王虎穿越了,而且悲催的成了五指山下的一只老虎。我去,这是要做猴哥虎皮裙的节奏?王虎表示不服。作为一只21世纪穿越来的新时代老虎,怎么着也要和猴哥拜把子,做兄弟啊!此时此刻齐天大圣孙悟空被压五行山马上就满五百年,再有十年,波澜壮阔,影响三界格局的西天取经之旅就要开始,看王虎如何在其中搅动三界风云,与猴哥一起再掀万...
万众瞩目之下,楚浩扔出一柄剑这轩辕剑你拿好,以后别在我面前装逼。这天,这地,这沧海,这宇宙,谁都无法阻止我。ps看完了?新书搜索从诡秘复苏开始不当人推荐票刷起来,让我们再次征战。...
本书架空,考据慎入 新书锦衣血途发布,欢迎收藏! 这里不是春秋战国,也不是东汉末年! 似曾相识的齐楚秦魏,截然不同的列国争雄! 来自现...
一个转世失败的神农弟子,想过咸鱼般的田园生活?没机会了!不靠谱的神农,会让你体验到忙碌而充实的感觉。师父别闹,就算我病死饿死从悬崖跳下去,也不种田,更不吃你赏赐的美食真香啊!本人著有完本精品农家仙田,欢迎阅读。QQ群42993787...
...
听说她在占卜,他捧着手眼巴巴的就过来了爱卿,你给本君算算,今晚是本君睡了国师呢?还是国师睡了本君?她哆嗦了一下,一脚就踹了过去谁都不睡!她今晚就阉了你!!重生前,她是惊才绝艳的大占卜师,重生后,她还是上知天文下知地理的一品国师,可是,她算了两世,却没算到自己这一世会犯桃花国师大人,不好了,帝君来了!卧槽!她一下子就从八卦盘里站了起来他来干什么?他不干什么!那就好那就好!她狂抹一把额头上的冷汗。小太监欲哭无泪可他说了,今晚他夜观星象,是个鸾凤和鸣...